Quinoa
It was held to be sacred by the Incas, it’s high in protein, gluten free, and one of the few plant foods that contain all nine essential amino acids, and it’s been a staple of Andean cultures for 4,000 – long before it became a global “it food.”
Quinoa is also high in magnesium, which helps with vitamin D absorption, making it a perfect ingredient for our Vitamin D Booster formulation.
Aside from being an absolute nutritional juggernaut, researchers have been studying the other areas of health that quinoa could have a positive impact.
Studies have shown that quinoa aids in preventing oxidative stress, making it a useful antioxidant. Other research has suggested that “quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans,” with potential beneficial links to diabetes and obesity control. Quinoa is also being studied for its impact on cancer but it is too early to say.
There are no known contraindications for quinoa.
Active constituents
Magnesium, potassium, phosphorous, amino acids, protein, omega-6, vitamin E, polyphenols and phytosterols
AVAILABLE RESEARCH
Magnesium
In this article, the authors review the nutrition and dietary qualities of quinoa. Their data reveals that quinoa contains 2496 mg/kg dry wt of magnesium, while the quinoa seed contains 2.6 mg/100 g. Thus, relative to other common cereals, quinoa is proven to be a rich source of magnesium.
In this article, the researcher examined the chemical contents and nutritional value of quinoa. The author found that on the basis of 1 kg dry wt, quinoa has more magnesium (2496 mg) than other cereals.
In this chapter, the author collated a number of studies with data that examined the contents of quinoa. The research suggests that the main minerals in quinoa seeds (QS) are magnesium, potassium, and phosphorus.
The objectives of this study were to characterize the distribution of food components in quinoa grain fractions and evaluate the food value of this grain. Mineral analysis showed that the quinoa grain is rich in Magnesium (Mg) and other minerals such as potassium (K), calcium (Ca), phosphorus (P) and and iron (Fe).
In this study, quinoa seed was examined to determine the distribution of minerals in it. The examination found evidence of magnesium, phosphorus, and potassium in quinoa.
ADDITIONAL RESEARCH
There is ongoing research on the effects of quinoa as it relates to the following health concerns:
Antioxidant
This review focuses on the phytochemical composition of quinoa and amaranth seeds, the antioxidant and anti-inflammatory activities of hydrophilic (e.g. phenolics, betacyanins) and lipophilic (e.g. fatty acids, tocopherols, and carotenoids) nutrients, and how these contribute to the potential health benefits, especially in lowering the risk of the oxidative stress-related diseases such as cancer, cardiovascular disease, diabetes, and obesity.
This work was designed to investigate the effect of diet supplemented with quinoa seeds on oxidative stress in plasma, heart, kidney, liver, spleen, lung, testis and pancreas of fructose-administered rats. These findings demonstrate that quinoa seeds can moderately enhance the antioxidant capacity of blood (plasma) and heart, kidney, testis, lung and pancreas.
Gastrointestinal
Researchers in this study aimed to evaluate the in vivo effects of eating quinoa in 19 adult celiac patients. It was found that addition of quinoa to the gluten-free diet of celiac patients was well tolerated and did not exacerbate the condition. There was a positive trend toward improved histological and serological parameters, particularly a mild hypocholesterolemic effect.
In this study, quinoa and amaranth were subjected to an in vitro digestion and used as carbon sources in batch cultures with fecal human inocula. The research suggests that that these pseudocereals can have the prebiotic potential and that their intake may improve or maintain microbial imbalance.
Obesity
A prospective and double-blind study was conducted on 35 women with weight excess who consumed 25 grams of quinoa flakes (QF) or corn flakes (CF). The findings showed that the reduction of total cholesterol and LDL-cholesterol, and the increase in GSH occurred only in the QF group, showing a possible beneficial effect of QF intake.
The objective of the present study was to investigate the effect on subsequent food intake and feelings of satiety of alternative oat bread, oat and buckwheat pasta and of quinoa as compared with their wheat counterparts and rice, respectively. It was found that in addition to oat or buckwheat formulations, also quinoa, may be exploited for their potential impact on eating behaviour, particularly considering they are good sources of functional substances.
The aim of the present study was to investigate the ability of quinoa extract enriched in 20E supplementation to prevent the onset of diet-induced obesity and to regulate the expression of adipocyte-specific genes in mice. The results of the study indicates that quinoa extract has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity-associated disorders.
The objective of this study was to assess the efficacy of two current cynosure protein substitutes; quinoa and amaranth in controlling short-term food intake and satiety in rats. At the end of the experiment it was observed that the rats ingesting quinoa- and amaranth-supplemented diets exhibited lesser food intake and lesser body weight gain as compared to control. These findings provide a scientific rationale to consider incorporation of these modest cereals in a diet meant to fight against growing obesity and poverty.
Diabetes
The objective was to study the effect of pseudocereals-based breakfasts (quinoa and buckwheat) on glucose variations at first meal (breakfast) and second meal (standardised lunch) in healthy and diabetic subjects. The data suggests that the two studied pseudocereals, quinoa and buckwheat, have high potential to improve glucose tolerance at the first and second meal (lunch) and are recommended to be introduced in our daily diet for healthy and diabetic subjects.
In this study, the health-relevant functionality of 10 thermally processed Peruvian Andean grains (including quinoa) was evaluated for potential type 2 diabetes-relevant anti-hyperglycemia and anti-hypertension activity using in vitro enzyme assays. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals (such as quinoa), and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension.
The effect of quinoa seeds on cholesterol, blood sugar levels, protein metabolism and selected essential elements (sodium, potassium, calcium, magnesium) level was determined in male Wistar rats that were fed high-fructose diets. The results suggest that quinoa seeds can reduce most of the adverse effects of fructose on cholesterol and blood sugar levels.
Other
In this article, the authors outline the nutritional properties of quinoa, which include its protein content (15%), amino acid balance, omega-6, and a notable vitamin E content. The article also suggests that it contains compounds like polyphenols, phytosterols, and flavonoids with possible nutraceutical benefits.
The aim of this review was to identify physiological effects of quinoa consumption with potential for human health. A critical evaluation of animal model studies was conducted. The research concludes that purported physiological effects of quinoa consumption included decreased weight gain, improved lipid profile and improved capacity to respond to oxidative stress.
This work identifies four clinical studies that demonstrate the effect of quinoa products in human health. The findings of those studies have demonstrated that quinoa supplementation exerts significant, positive effects on metabolic, cardiovascular, and gastrointestinal health in humans.
In this article, the authors outline data surrounding nutritional and functional properties of quinoa. They conclude that quinoa is an excellent example of ‘functional food’ that aims at lowering the risk of various diseases. Functional properties are given also by minerals, vitamins, fatty acids and antioxidants that can make a strong contribution to human nutrition, particularly to protect cell membranes, with proven good results in brain neuronal functions. Its minerals work as cofactors in antioxidant enzymes, adding higher value to its rich proteins. Quinoa also contains phytohormones, which offer an advantage over other plant foods for human nutrition.
In this study, researchers isolated six flavonol glycosides from quinoa seeds (Chenopodium quinoa Willd) via normal phase and reverse phase column chromatography. On the basis of this data, all six compounds exhibited antioxidants.
Anti-Cancer
In this study, the researchers wanted to determine if lunasin, a novel cancer-preventive peptide that has been detected in various plants, would also be detected in 15 quinoa samples. Their findings indicate that lunasin is, in fact, present in quinoa and is bioactive.
In this study, the anticancer and antioxidant activities of Chenopodium quinoa leaves (ChL) were evaluated. The researchers observed that compounds from quinoa leaves possess a chemopreventive and anticarcinogenic potential, demonstrates the possible positive effects of ChL for dietary supplementation.
In this study, researchers set out to examine quinoa (Chenopodium quinoa) as a promising nutraceutical cereal. The anticancer effect of quinoa was investigated on human liver cancer and breast cancer cells. The results suggest that the bioactive polysaccharide from C. quinoa provided promising potential as a natural antioxidant, immune-regulating and anticancer candidate for food and even drug application.